If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=80(t)+16t^2
We move all terms to the left:
10-(80(t)+16t^2)=0
We get rid of parentheses
-16t^2-80t+10=0
a = -16; b = -80; c = +10;
Δ = b2-4ac
Δ = -802-4·(-16)·10
Δ = 7040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7040}=\sqrt{64*110}=\sqrt{64}*\sqrt{110}=8\sqrt{110}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{110}}{2*-16}=\frac{80-8\sqrt{110}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{110}}{2*-16}=\frac{80+8\sqrt{110}}{-32} $
| 2(2n+2)+2n=5n-5 | | 3x-1=6x-9 | | 8+3=2x | | 29x-1=17x-3 | | 65y=64y+320 | | 4a+10=a+40 | | 4/x=13/3 | | 253+35x=9 | | 10x-1/2(4x+20)=30 | | 5(2x-9)+1/4(-16x-8)=1 | | 65y=256 | | x=2(x+6)10 | | y=-3*1+5 | | 23+4*2=w | | 20=1.25*x+6 | | 6y-11=24 | | 11=z/8+2 | | 15x+2=14x+7 | | X+710=-0.7x+1120 | | 4x-23=2 | | 1/3(n+1)=2=1/6(3n-5) | | 65y=64y+42 | | 23-4x=2 | | 48/f=6 | | -3k-6=4-k | | -10+5/2t=11 | | 4x+23=2 | | 21+15x=10x+50 | | 3(c+6)=2(c-3) | | 2.5(x+2)+3.5=10.8(x+1.5) | | 23+4x=2 | | -3(x-1)=-5(x-3) |